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Abstract

Understanding the principle of information flow across distributed brain networks is of paramount
importance in neuroscience. Here, we introduce a novel neuroimaging framework, leveraging integrated
effective connectivity (iEC) and unconstrained signal flow mapping for data-driven discovery of the
human cerebral functional hierarchy. Simulation and empirical validation demonstrated the high fidelity
of iEC in recovering connectome directionality and its potential relationship with histologically defined
feedforward and feedback pathways. Notably, the iEC-derived hierarchy displayed a monotonously
increasing level along the axis where the sensorimotor, association, and paralimbic areas are
sequentially ordered — a pattern supported by the Structural Model of laminar connectivity. This
hierarchy was further demonstrated to flexibly reorganize according to brain states, flattening during an
externally oriented condition, evidenced by a reduced slope in the hierarchy, and steepening during an
internally focused condition, reflecting heightened engagement of interoceptive regions. Our study
highlights the unique role of macroscale directed functional connectivity in uncovering a
neurobiologically grounded, state-dependent signal flow hierarchy.

Introduction

Human cognition arises from ever-changing dynamical flows of neural information across distributed
brain networks. Cortical hierarchy, one of the most fundamental architectures for this functional
dynamics, has been extensively investigated in previous studies, with a focus on the computational
principles of sensorimotor hierarchies in early work! ™7, while recently more expanded to the whole-brain
level®~19 to highlight its global basis involved in a wide range of cognitive functions. Indeed, a rich array
of evidence from histology'"'?, tract-tracing'®'4, and functional MRI (fMR1)">® studies has shown that
both human and non-human primate brains exhibit a unique large-scale organizational axis spanning
from the sensorimotor to association cortices, termed as ‘functional gradient”® or ‘global processing

hierarchy’®1718_ Notably, this macro-scale axis has been reproduced across multiple neuroimaging

19-24

studies and related to multiple cognitive functions such as perception, action and social

processing?32°~2/, typical development?'?82% and system-level pathogenicity in neuropsychiatric

conditions3%734. Despite its significance, exactly how the hierarchical organization emerges from
dynamical neural information flow remains poorly understood.

Two major issues contribute to this lack of understanding: 1) the state-dependent organization of
functional brain dynamics and 2) the limitations of conventional fMRI connectome analytics. The former
arises from the brain’s frequent state transitions. Indeed, in daily life, our brain continuously shifts
between different states, driven by exteroceptive stimuli, such as watching a movie with a high influx of
multisensory information, as well as interoceptive signals, such as hunger or thirst reflecting the ongoing
physiological states of the body. Even at rest, the brain dynamically organizes neural pathways to
generate diverse thoughts from continuous mind wandering. While this “state-dependent functional
dynamic” is a fundamental characteristic of the brain for adaptive behaviors, so far only few studies have
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systematically compared different brain states with respect to their dynamics, especially in the context
of information flow along the cortical hierarchy.

The second issue is that the current network neuroscience approach predominantly relies on undirected
functional connectivity (FC). Given that the brain network is a constellation of feedforward and feedback
pathways, the inability to infer connectome directionality significantly impedes the field's advancement.
This challenge has spurred the development of an alternative approach— effective connectivity (EC)
mapping—a 'directed version' of connectome analytics. This technique, which enables the statistical
inference of the net influence of one brain area on another, has been increasingly sophisticated and
improved in recent studies, now supporting even the whole-brain assessment of directed connections
based on fMRI data®>~3’. As these methods flourish, however, EC research is encountering new
challenges related to algorithm development and validation3®, which are crucial to address to move
forward to the next generation of EC approaches. These issues are summarized as follows:

1. Overabundance of EC algorithms. Over the last two decades, the field has witnessed the proposal of

numerous EC algorithms3637:39750 each based on a unique mathematical principle. This diversity,
while testament to the field's vibrant interest, paradoxically resulted in a lack of consensus, which
made it unclear when and how to use each algorithm and raised concerns for reproducibility of
findings*14951755 as different methodological foundations may lead to unintended variations in the
results.

2. Network complexity. While different EC methods have unique strengths in their statistical properties,
most of them have not been sufficiently tested for high-complexity network data (e.g., high-
resolution network nodes with dense cyclic and negative connections), and except for few recent
studies®>36, their scale often remained on the order of several dozen nodes*'48°675% As shown in
recent approaches of brain parcellation, however, the human cerebral cortex can be divided into at
least = 100 functionally and/or structurally distinct areas®%®’. Developing EC algorithms that are
scalable to networks with high dimensionality and complexity is therefore imperative to precisely
infer the functional dynamics in the human brain.

3. Lack of biological validation. EC algorithms are typically validated using artificially simulated
networks rather than real biological data. This is particularly true in the human brain, where ground
truth remains unknown. This lack of biological validation often leads to a limited use of EC analyses,
mainly for those studies having a clear hypothesis on the connectivity configuration of a targeted
circuit®?7%4 (but see recent advances®>%7).

Here, we propose a unified imaging analysis framework termed “integrated EC (iEC)” to overcome these

challenges. This approach is based on the idea of combining multiple existing EC algorithms with

distinct mathematical properties3® in order to synergize their complementary strengths while obviating
the development of yet another statistical algorithm. To implement this, we underwent an extensive
validation of individual EC algorithms and integrated them into the iEC framework, testing on the
simulation of biologically plausible networks and comparing with the empirical tract-tracing and resting-
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state fMRI data across two different network complexities, both comprising = 100 nodes and dense
cyclic connections.

After demonstrating the significant prediction accuracy of the iEC framework, we used it to thoroughly
chart out the characteristics of directed functional connectivity in the human brain. This analysis
revealed distinct connectional polarity along the cortical hierarchy, with unimodal sensory areas
predominantly sending positive signals, whereas heteromodal association areas exhibit a balanced ratio
of positive and negative signals. Given that these patterns closely mirror converging evidence on the
characteristics of feedforward and feedback connections in previous studies®®79, we further leveraged
a data-driven method to estimate the hierarchical level based on iEC. This provided, for the first time, a
neurobiologically grounded ‘signal flow functional hierarchy’in the human brain. Indeed, this map
showed a remarkably similar pattern to a previously established conceptual model of the brain hierarchy
(i.e., Mesulam'’s proposition’") but also to cytoarchitecturally determined cortical types’?, both spanning
from low-level sensory (koniocortical) to higher-order (eulaminate and dysgranular) areas and up to the
paralimbic (agranular) regions, the latter mainly known for interoceptive cortical areas that relay signals
from the ‘internal milieu’ (i.e. body and organs)”3. Lastly, we demonstrated that the identified cortical
hierarchy undergoes considerable state-dependent reorganization by comparing the hierarchy map of the
resting state to those of two other (non-resting) brain states, j) a movie-watching condition which mainly
evokes externally oriented process, and /i) a tonic pain condition (induced by oral capsaicin), which
evokes more interoceptive bodily sensation. Together, our iEC framework offers a unique opportunity for
in-vivo cartography of signal flow hierarchy in the human brain and paves a way towards a quantitative
delineation of state-dependent network information flow.

Results

Our study consists of two main phases. First, we examined the distinct characteristics of individual EC
algorithms. While investigating the strengths and weaknesses of each method, we developed a new
approach to integrate their results (integrated EC, hereafter called iEC’), which demonstrated
significantly improved accuracy of EC mapping through a multi-step validation process. In the second
phase, we utilized this iEC to comprehensively examine the human brain in terms of /) global patterns of
unconstrained signal flows, /i) retrieval of signal flow hierarchy, and Jjij) the state-dependent
reorganization of this hierarchical structure.

To develop our iEC framework, we first selected representative EC algorithms using a taxonomy created
based on predefined methodological criteria (Fig. 1a and Supplementary Fig. 1; see Methods ‘2. Effective
connectivity algorithms’ for more details). Specifically, we divided existing EC algorithms into two
principal categories: the Graphical model and the Dynamical system. Within each category, we applied
specific criteria to ensure /) detection of cyclic connections, /i) scalability and Jij)) mathematical
uniqueness. This process led us to identify three distinct methods, each from a unique algorithmic
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family: Fast Adjacency Skewness (FASK in the BayesNet family)*, Vector Autoregressive Model (VAR in
the lag-based family)’# and regression Dynamic Causal Modeling (rDCM in the broader DCM family)2®.
The chosen algorithms were then integrated to construct the iEC. To this end, we computed a weighted
sum of individual EC results (i.e., IEC=1XEC,popmt+ B2XECyart B3XECeask; Fig. 1b), in which the B value for
each algorithm was optimized to yield the iEC such that it shows the highest correlation with the target
connectivity metrics (explained in the next section). To prevent overfitting, we optimized the weights in a
cross-validated manner, employing Bayesian optimization’® (see Methods ‘2.4 Integrated EC
framework).

1. Three-step validation of EC algorithms

To comprehensively evaluate the accuracy of individual algorithms and iEC, we employed a multi-step
validation, including /) whole-brain simulation using synthetic directed networks, and empirical data
comparison using /j) non-human primate and Jij) human brain networks (Fig. 1¢). The details are as
follows.

1.1 Validation using synthetic networks

To maximize biological plausibility, a group-averaged structural connectivity (SC) from empirical human
diffusion MRI data was used as an initial template for synthetic network generation (Fig. 2a). Upon this
SC template, we induced directionality by randomly rearranging their connections while preserving each

node’s outdegree. Then, the Hopf model, a well-established tool for simulating oscillatory neural

dynamics’®, was employed to generate brain signals based on these synthetic networks. The signals

were then fed into each EC algorithm (i.e., FASK, VAR, and rDCM). The outcomes were compared to the
ground truth target matrix (/.e., directed synthetic network) using two representative graph-theoretical
metrics: edge strength (i.e. connectome-wise EC magnitude) and weighted degree centrality.

The inferred ECs from all individual algorithms demonstrated significant correlations with the synthetic
networks, as measured by edge strength (Fig. 2b; ryegian for rDCM, VAR, and FASK (Schaefer/MMP) =
0.61,0.73,0.74/0.37,0.44,0.54, respectively; prpg<0.001) and degree distribution (Fig. 2¢; ryedian for roCM,
VAR, and FASK (indegree/outdegree) = 0.38,0.37,0.42/0.42,0.43,0.53 when using MMP; all pgpr<0.001;
see Supplementary Fig. 2 for results from the Schaefer atlas). The accuracies also highlighted unique
differences among these algorithms, with FASK outperforming the others in all simulations, particularly
in a more complex network that have a higher number of nodes (i.e., MMP-360). Notably, the iEC
framework successfully integrated individual algorithms, showing a markedly higher correlation with the
ground truths across all metrics and parcellation schemes (r,cgian=0-83/0.64 for edge strength

correlation of Schaefer/MMP; rp,,04ian=0.45/0.57 for degree correlation of Schaefer/MMP; all p < 0.001;
we further investigated the details of the B value optimization in Supplementary Fig. 3).

1.2 Validation using macaque tract-tracing and fMRI data
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After initial validation through simulation, we broadened our assessment to include real-world scenarios,
employing a tract-tracing'® and resting-state fMRI (PRIME DE’’) from the macaque brain (Fig. 2d). We
applied the individual EC algorithms to the resting-state fMRI data from 19 anesthetized macaques,
parcellated using the M132 atlas’®. These individual results were then integrated to construct the iEC
using the same cross-validation strategy as in the simulation analysis. To evaluate the performance of
EC mapping, we compared EC with the “Fraction of Labeled Neurons (FLN)", an established tract-tracing
measure developed in the macaque research community’3. Specifically, FLN refers to the proportion of
neurons that are histologically labeled after tracer injections, which indicates the directed connectivity
strength between the injected and target regions (see Methods ‘7.7 Macaque tract-tracing data' for
details).

The quantitative comparison showed that both rDCM and FASK could recover the FLN matrix with a
significant accuracy (Inedian=0-44 and 0.43, respectively; all p < 0.001). Corroborating a previous finding
from our simulation analysis, the iEC framework outperformed these individual algorithms (r,egian=0-53,
p <0.001), further highlighting the strength and efficacy of our integration approach (Fig. 2e). Notably,
visual inspection of iEC results (“Integrated EC” matrix in Fig. 2d) indicated that positive connections (red
color-coded) are both stronger and more prevalent, while negative connections (blue color-coded) across
the brain areas are generally weak and sparse. Previous studies suggested that these connection

78,79

polarities from fMRI may reflect intricately mixed excitatory and inhibitory effects’®’~, potentially aligned

with feedforward (FF) and feedback (FB) signal pathways®®. Indeed, while a dominant portion of FF
connections have been previously found to target excitatory neurons (thus exerting positive and

amplifying influences to target regions)®, FB connections were associated with both excitatory and
inhibitory pathways®'783, although the later, ‘suppressive’ effect has traditionally been considered a major
characteristic of FB. To assess whether these distinct patterns can be also captured in our macro-scale
analysis, we profiled the iEC with respect to SLN (Fraction of Supragranular Labeled Neurons), a marker
to quantitatively index the level of FF and FB connectivity®* (see Methods ‘7.7 Macaque tract-tracing
data). Interestingly, when we categorized iECs into FF or FB by applying 0.5 threshold to their SLN value
(range: 0—1; FF: SLN > 0.5; FB: SLN < 0.5), the majority of iECs corresponding to the FF pathway were
positive, while those corresponding to FB showed a relatively balanced ratio of positive and negative

connections (Fig. 2f), mirroring previous reports on signal influences exerted by FF/FB pathways.

1.3 Validation using human fMRI

Finally, we evaluated the EC algorithms using human resting-state fMRI (from HCP 440-subjects
discovery/replication data; see Methods 2.4 Integrated EC framework). As an established ground truth is
absent in the human brain, we devised a new evaluation method termed “EC-to-FC recovery” (Fig. 2g). In
this approach, the EC inferred by each algorithm was fed into the Hopf model, serving as a virtual
backbone of directed connectivity to generate brain signals. This in turn allowed the reconstruction of a
simulated FC matrix. We compared this recovered FC with an empirical FC derived from actual fMRI

Page 7/44



signals (thus ‘EC-to-FC recovery). The rationale underpinning this approach is that if the inferred EC
effectively captures the true underlying net-influence structure of brain network organization, the FC
simulated from this EC should reasonably emulate its empirical FC counterpart.

Consistent with our previous validation, testing on the human brain also revealed the effectiveness of our
iEC framework, which showed the highest correlation with empirical data (Fig. 2h; rpedian=0.75, p < 0.001
at the individual level, and r,,¢4ian=0.81, p < 0.001 at the group level based on MMP-360; see
Supplementary Fig. 4a for the result from Schaefer-100). Notably, regarding the performance of
individual algorithms, contrary to the findings of previous analyses, FASK showed the lowest accuracy in
this setup (EC-to-FC recovery; Fig. 2h). This finding suggests that high EC-identification performance
alone (Fig. 2b, e) does not guarantee the effective EC-to-FC recovery, and that more complex interactions
among various factors related to the connectivity may be involved (see Supplementary Fig. 4b for more
details about this issue, where we performed a post-hoc analysis scrutinizing the contribution of each
algorithm on the EC inference along their connectome properties).

2. Investigation of iEC profiles and signal flow hierarchy in the human brain

2.1 Profiling of the human whole-brain iEC

Having validated our iEC framework, we now focus on the profiling of the human whole-brain EC
architecture using a group-level iEC matrix derived from resting-state fMRI of 220 healthy young adults
(i.e., discovery dataset).

Organizing the connectivity matrix according to the Yeo-Krienen atlas®® revealed a distinct connectome
organization (Fig. 3a): connections within modules were predominantly positive, while those between
modules mainly fell into the negative range, which may reflect a nature of functional interactions in terms
of network integration and segregation. Furthermore, in line with previous electrophysiological recording
and retrograde tract-tracing experiments®®8”, the ECs in the human brain exhibited a heavy-tailed
distribution of connectivity strength (tail index = 1.45; the tail index < 2 indicates heavy-tailedness of a
distribution®®), indicating the presence of infrequent yet strong positive connections (Fig. 3b). In
contrast, the negative connections showed an opposite pattern, characterized by weak strength but with
a considerable proportion in the entire network (40%).

Next, we examined the directionality of iEC with respect to two network measures: weighted degree
distribution and intrinsic signal flow. In the analysis of weighted degree distribution, we calculated the
ratio of connection polarity (i.e., negative vs. positive) for both out- and in-degree ECs (Supplementary
Fig. 5a). This revealed a discernible dominance of positive outdegree ratios within the sensory cortices,
contrasted by a prominent presence of negative outdegree ratios in the heteromodal areas. More
specifically, when we categorized them based on hierarchically ordered functional networks®>, the
proportion of signed connectivity showed a similar trend with the macaque tract-tracing result (Fig. 3c):
a disproportionately large amount of positive ECs from early sensory areas and a balanced presence of
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positive and negative ECs from heteromodal areas, which may represent the influence of FF and FB
pathways, respectively®®.

To further explore the impact of this connection topology on signal propagation across the cortex, we
employed a linear dynamical system analysis that examines ‘unconstrained signal flow’ from predefined
seed areas'® (Fig. 3d; see Methods ‘5.2 Signal flow analysis’). This analysis revealed that positive signals
predominantly originate from hierarchically lower cortical areas, whereas negative signals are almost
exclusively sent from the high-order to low-level regions. Moreover, each of unimodal and heteromodal
areas showed strong positive signals within their module, suggesting highly specialized functional
subsystems (Fig. 3e). In sum, our findings suggest that the iEC has the potential to recapitulate the
principle of signal flows across areas of varying hierarchical levels (see Supplementary Fig. 6 for
reproducibility in the replication dataset).

2.2 Retrieving signal flow hierarchy from iEC

The iEC analyses conducted so far have provided converging evidence indicating distinct signatures of
directed functional connectivity that reflect hierarchical organization, including /) a significant
relationship between iEC patterns and FF/FB connectivity in the macaque brain (Fig. 2f), ji) a different
proportion of positive/negative signaling along the sensory-association axis in the human brain (Figs. 3c
and 3d), and iii) the observation that the majority of negative signal flows occurred in the heteromodal-
to-unimodal pathways (Fig. 3e). These findings collectively motivated a systematic evaluation to assess
whether iEC can provide any useful information to determine hierarchical levels of the cortical areas in
the human brain.

To address this question, we employed an established modeling framework®4°9, originally designed to

quantify the hierarchical levels of cortical areas and examined their presumed top-down and bottom-up
connectivity topologies. Traditionally, this framework has been reserved for macaque studies due to the
necessity of histological data (e.g., SLN values), through which the feedforward and feedback properties
of the connections could be inferred. However, as our findings (Fig. 4a) also provide insights into
inferring the hierarchical levels of cortical areas, we used the group-level iEC matrix as a substitute for
SLN to reconstruct a signal flow hierarchy map of the human brain using this framework (see Methods
‘5.3 Hierarchy estimation).

The mapping of this signal flow hierarchy revealed a distinct and organized structure (Fig. 4b): primary
sensory and motor areas occupy the lowest tiers, while paralimbic cortices, such as the anterior
cingulate, insular, and parahippocampal regions, are positioned at the highest levels of cortical hierarchy.

This pattern was partly comparable yet still distinct enough from a well-known functional gradient'®, a
dimension-reduced topographic map of (undirected) FC representing a sensory-association axis?®
(Fig. 4c). Indeed, there was a significant spatial correlation between our EC-based hierarchy and the

functional gradient map (r =0.34, p < 0.001). Yet, the paralimbic regions exhibited higher values
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exclusively in the EC-derived hierarchy map. This emphasis on the paralimbic regions aligns with

Mesulam’s initial proposition’?, in which these areas have been conceptualized as a ‘neural bridge’
linking the neocortex and hypothalamus (which directly monitors the internal milieu) (Fig. 4d).

The validity of our EC-based hierarchy map was further supported by the post-hoc analysis involving
cyto- and myelo-architecture (Supplementary Fig. 7a). For the cytoarchitecture, we used Campbell's

atlas?192

, a historical neuroanatomy resource for microscopic cellular observation. When the brain areas
in this atlas were sorted based on our EC hierarchical values, the pattern closely matched a known
hierarchy stream: primary sensory areas at the base, followed by unimodal and heteromodal association
areas and ending with paralimbic areas at the top. A significant correlation with myeloarchitecture (by
Nieuwenhuys’ atlas depicting a cortical myelin level’?) was also found (r = 0.42, p < 0.001), underscoring

the relationship between the signal flow hierarchy and its anatomical substrates (myelin degree), which
has been previously reported to reflect the structural hierarchy of the brain.?.

Most importantly, our validation drew upon the seminal ‘Structural Model theory®*°, which posits that

FF/FB connections depend on the laminar structure of the connected areas. According to this model, FB
connections typically originate from areas with simpler laminar structures (‘agranular’ or ‘dysgranular’)
and target areas with more elaborate laminar structures (‘eulaminate’ or ‘koniocortex’), and vice versa for
the FF connections (i.e., more elaborate to simpler laminar targeting). Inspired by this theory, we tested
our hierarchy map by examining its whole-brain profile across different cortical types (Fig. 4e). This
analysis revealed a highly significant alignment (GLM t = 5.14, p < 0.001), with a progressive increase in
hierarchy corresponding to decrease of granular layers (see Supplementary Fig. 7b for the result when
measured based on the functional gradient).

Finally, we again performed the unconstrained signal flow mapping on iEC, yet this time with the cortical
areas sorted out by Mesulam'’s cortical zones. This analysis revealed that the pattern we have previously
hypothesized in terms of FF (i.e., largely excitatory) and FB signaling (balanced excitatory and inhibitory
influences) are well captured in our EC-based cortical hierarchy (Fig. 4f). Indeed, both primary sensory
and unimodal association areas mostly emit positive signals, while the heteromodal regions show a
balance between positive and negative signal flows, and this pattern even converts in the paralimbic
region to the one with negative signals exclusively detected.

2.3. State-dependent reorganization of signal flow hierarchy

Although the hierarchy map we derived from resting state fMRI provides compelling evidence for
biological validity, it is still derived from only a single specific brain state, which occurs without explicit
environmental engagement. The next logical question was therefore if this hierarchical organization
remains preserved (as a backbone of default functional dynamics) even when the brain transitions to
other functional states, or if it is reorganized to optimize neuronal information processing in response to
contextual changes (i.e., state-dependent functional reconfiguration). To address this question, we
analyzed two additional neuroimaging datasets, each representing a major (non-resting) brain state: one
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from fMRI scans conducted during movie watching (‘Forrest Gump’) and another during the experience
of tonic pain induced by oral capsaicin delivery (see Methods ‘7. Data acquisition’). The former captures
an externally focused state, where attention is directed towards visual and auditory stimuli (i.e., primarily
exteroceptive), while the latter represents a more internally focused state, where awareness is
concentrated on sustained painful sensation within mouth (i.e., more interoceptive). Both the group-level
iEC matrix and signal flow hierarchy were constructed using the same procedure as in the previous
analyses (see Supplementary Fig. 8 for iEC results).

When directly correlating the spatial patterns of hierarchy maps across different states, we found that
both movie-watching and tonic pain states exhibit trends similar to the resting state (Fig. 5a;r =
0.46/0.64, respectively; both p < 0.001), suggesting the stability of overall functional hierarchy across
different brain states. Despite this globally shared pattern, each state also displayed its idiosyncratic
hierarchical changes. To explore this within the framework of Mesulam’s cortical organization (Fig. 4d) —
which uniquely stratifies cortical areas based on their role in processing the external environment versus
the internal milieu — we assessed the hierarchical levels of four cortical zones: primary sensory,
unimodal and heteromodal association, and paralimbic areas. Firstly, the signal flow hierarchy in the
resting state, consistent with our previous analysis (Figs. 4e-g), demonstrated a monotonically
increasing hierarchy across these cortical zones (Fig. 5b, orange).

Compared to this, however, during the movie-watching state (Fig. 5b, pale green), the primary sensory
and unimodal association areas showed an elevated hierarchy, while the heteromodal association and
paralimbic areas exhibited an opposite pattern, overall suggesting a signature of ‘flattened cortical
hierarchy’. This is consistent with a recent finding reported in a naturalistic fMRI study®®. This hierarchy
change was explained by the subsequent signal flow analysis (Fig. 5c left), which demonstrated 1) an
overall decrease of positive signals from the primary sensory areas, 2) another decrease of negative
signals from paralimbic areas, and 3) an increase of negative signals in the unimodal association areas
(i.e., higher-order visual cortices), collectively resulting in less differentiated hierarchical levels
throughout the whole brain (‘hierarchical flattening’). Notably, the latter observation, an increase of
negative signals from the higher-order visual areas, was found to mostly target auditory regions,
potentially suggesting a competing modulatory effect of shared attentional resources®’ and/or
multisensory integration®®. This state-dependent reorganization during movie-watching therefore
suggests a shift in cognitive load towards externally oriented processes, as indicative of altered FF/FB
signaling along sensory and attention pathways®®~107.
In contrast, the tonic pain condition led to a brain state with a steeper hierarchical gap between the
paralimbic and non-paralimbic areas (Fig. 5b, pale purple). Again, the signal flow mapping provided a
parsimonious account for this change, demonstrating a decreased negative signal emission from the
heteromodal association areas (particularly from the angular gyrus; Fig. 5c right), which may cause their
hierarchy levels to diminish (thus resulting in a larger disparity between the paralimbic and non-
paralimbic areas). This also indicates a state-dependent hierarchical shift, but different from a movie-
watching condition, the brain appears to focus on mostly top-down effects of interoceptive areas by
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rendering the negative signals to be emitted primarily from the paralimbic system. This may suggest the

prioritization of an allostatic control to cope with a potential danger from sustained pain'9%103.

We finally note that there is also a state-general component across all three brain conditions: strong
negative signal flows from ‘paralimbic/heteromodal to unimodal’ regions (especially from the cingulate
and orbitofrontal areas; Fig. 5a), highlighting the importance of their state-invariant modulatory effect. In
sum, these results suggest that while the global pattern of signal flow hierarchy may be relatively
preserved across different states, the degree of hierarchy and its functional dynamics can be
significantly adjusted to more efficiently respond to the given (either external or internal) environmental
changes.

Discussion

Ever since Hubel and Wiesel's initial discovery in the visual cortex'%?, functional hierarchy has been a
central topic in systems neuroscience, serving as a primary basis to study the principle of neural
information flow. While early work tended to focus on the sensory hierarchy'9%1%, the notion of this
hierarchical architecture has been more broadly expanded over the last two decades, recently
emphasizing the significance of its whole-brain representation spanning from the sensorimotor to
association areas”10.1680.93,107.108 |, thjs study, we reconstructed a biologically grounded signal flow
functional hierarchy of the human cerebral cortex in a fully data-driven manner, analyzing different brain
states across multiple fMRI datasets. Given that the hierarchy is inherently organized by ‘directed
feedforward (FF) and feedback (FB) pathways®41%°, we employed macroscale effective connectivity,
linearly combining the results of existing individual algorithms (iEC). This collective inference was
demonstrated not only to boost the accuracy of directionality estimation but also to allow for the
discovery of interesting relationships between signed (positive and negative) connections and
histologically derived FF/FB pathways, providing a crucial hint to infer a hierarchical structure from in-
vivo fMRI. Indeed, our iEC-based hierarchy revealed a strong alignment with a spatial distribution of
hierarchy-indexed cyto- and myelo-architectonic features as well as the laminar proportion of granular
cells across the brain, effectively recovering the ‘sensorimotor-association-paralimbic’ axis, as originally
proposed in Mesulam'’s cortical zone’!. Moreover, we found that this functional axis does not always
adhere to a fixed hierarchy, but instead reorganizes dynamically according to brain states, potentially
enhancing behavioral adaptability in response to rapidly changing environments. Our findings thus offer
a novel avenue to quantitatively probe state-dependent neural information flows along the biologically
validated signal flow hierarchy in both typical and atypical human brain conditions.

The idea behind how fMRI-based iEC enables the estimation of signal flow hierarchy was built upon
multiple observations on our iEC profiles and their interpretation in the context of previous literature.
Traditionally, the FB connections, for instance those observed between the cortex and thalamus, were
primarily considered to exert a modulatory (often inhibitory) effect, refining bottom-up sensory

information''%"115. However, emerging evidence indicates a more active role of FB connections, not only
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as a modulator but also as a driver to increase the neural activity (excitatory)''®11”

, especially for
hierarchically proximate cortical areas®' 3. In contrast to such mixed neurophysiological effects of FB,

the characteristic of FF connections has been almost exclusively associated with excitatory effects on

the targeted area (but see the recent perspectives''17%). For example, in the macaque brain,

experimentally silencing V1 through cooling strongly suppresses neural activities across the series of

hierarchically connected areas from V2 to V5/MT, highlighting a significant driving role of FF

pathways'207125,

Importantly, these distinct excitatory-inhibitory patterns between FF and FB connections also seem
observable in our macroscale iEC profiles, assuming that positive iEC generally represents an excitatory
effect whereas negative iEC relates more to an inhibitory effect. Parallel to this notion, when associating
the sign of iEC and the patterns of supragranular labeled neurons (SLN), a histological metric to
quantitatively determine the degree of FF/FB pathways in the macaque brain, we found a unique pattern
of ‘signed iEC asymmetry gradient: FF connections, as determined by SLN, were characterized by a
disproportionate ratio of positive iECs, whereas FB connections additionally exhibited a significant
increase of negative iECs, resulting in a more balanced distribution of signed iECs. A similar asymmetry
gradient was also observed in the human brain, where low-level sensory areas, known as key sources of

FF signaling’-°9121.126

, exhibited a dominant proportion of positive iECs, whereas the higher-order
association areas (major sources of FB signaling’?’~13?) displayed progressively enhanced negative
iECs in addition. These cross-species findings, together with the previously hypothesized role of FF/FB
connections, collectively suggest that despite its macroscale nature derived from fMRI, iEC may contain
biologically meaningful signals to infer the trace of FF/FB connections, which provides a testable ground

to reconstruct the signal flow hierarchy in vivo.

Given this motivation, we indeed analyzed the iEC matrix in more depth to quantitatively reconstruct the
signal flow hierarchy, inspired by the seminal macaque studies®*°°. Specifically, we used a general linear
model (GLM) to estimate a hierarchy difference between the two brain areas (i.e., source and target)
according to the following, very simple rule: if the source exerts dominantly positive (or negative)
influences on the target, the former cortex ranks lower (higher) than the latter one in the hierarchical
axis. However, when it comes to more complex networks such as the one analyzed in our study (i.e., 360
nodes that generates > 10° connections), calculating the analytical solution of GLM that is 100%
satisfactory in terms of correctly ranking all brain areas without any violation is not possible, because of
their complicatedly intertwined EC relationships. Instead, what the GLM solution provides is the hierarchy
setting with ‘the least tension’ across brain regions. That is, although the hierarchy level is overall
properly assigned across the brain, there could still be some areas positioned at a relatively higher
hierarchical level, yet they may emit (not only negative iECs but also) a large amount of positive ECs to
other brain regions (e.g., heteromodal areas in our map). It should be noted, therefore, that this hierarchy
assignment is not simply a problem between the two brain nodes but is a collective result, for which one
has to take into account all other relationships with the rest of the brain.
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Despite such computational complexity, our iEC-based method revealed several biologically noteworthy
findings in hierarchy mapping. Firstly, compared to the widely used connectome compression approach
called ‘functional gradient’"®, which places the default mode network in the apex of the hierarchy, our iEC-
based result puts more emphasis on the paralimbic regions to characterize a hierarchical stream of the
human brain, which is in parallel to the original proposition of Mesulam’". This suggests that although
many studies currently focus on the sensory-to-association axis, framing it as a major functional
organization principle, the axis should also take the interoceptive cortical areas into consideration,
treating them as yet another pivotal anchor. This finding highlights the importance of homeostatic and
allostatic body regulations of the internal environment in goal-driven interactions with the external world.
This is supported by our observation on the elevated paralimbic hierarchy (with flattened other areas’
hierarchy) during the tonic-pain condition (Fig. 5b), suggesting that the brain may inherently prioritizes
the processing of interoceptive inputs over exteroceptive counterparts in certain contexts. Secondly, the
validity of our hierarchy was also corroborated by histological architectonic maps'%°1:92, together with
the cortical type analysis based on the ‘Structural Model of laminar connectivity’'°. Notably, when we
compared this hierarchy pattern to the one reconstructed based on only the positive iEC (thus assuming
that their difference stems from the negative iECs), the paralimbic areas with a diminished laminar
organization (i.e., dysgranular and agranular cortices) exhibited the largest hierarchy changes
(Supplementary Fig. 9) across the entire cortical zones, suggesting a significant contribution of negative
iECs in precisely capturing the properties of hierarchically higher-order cortical regions, particularly for
their potential FB modulation effects.

Most importantly, our findings underscore the significance of dynamic and flexible reconfiguration of the
functional hierarchy based on given brain states. This phenomenon, termed ‘state-dependent hierarchical
reorganization, is critical for the adaptive functioning of the brain. Indeed, despite the largely static
nature of its ‘anatomical’ hierarchy, the state-dependent shifting mechanism enables transiently
reconfiguring a large-scale functional architecture of the brain, allowing it to effectively respond to
moment-by-moment environmental and task-related changes, and thereby enhancing its overall viability.
Indeed, the seminal paper by Felleman and Van Essen 1991 had already conjectured the possibility of
this mechanism in the following sentences: “Another possibility is that a hierarchy exists only in a loose
sense, for instance, at the level of the different cerebral lobes, but not in any precisely definable manner
for individual cortical areas.”, (Providing an analogy with human societies) “.. Some organizations have
an utterly rigid hierarchy, in which every individual knows precisely his or her place within a pecking order.
Others are less well defined ... may be inherently fluid and context dependent, in that one person ranks
above another in one particular circumstance but below the other in another circumstance.”. We believe
that our discovery of the state-dependent reorganization offers novel insights into how the brain forms
such a context-dependent functional hierarchy. The finding of flexibly elevated or flattened hierarchy in
specific cortical regions in response to different environmental contexts exemplifies such a
phenomenon. It will offer compelling evidence for the principles of functional brain adaptability,
especially when it is combined with more neurobiologically grounded circuit mechanisms, such as

neuromodulatory controls via cortico-subcortical loops33134,
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Beyond the biological implications, our findings also offer methodological insights, especially for
modeling studies in a large-scale network simulation of the human brain, a research field recently
garnering great attention in computational and clinical neuroscience'3°~13°. While previous work

targeted to study the effects of ‘local’ biophysical parameters to simulate brain signals (e.g., recurrent

138,140

excitatory and inhibitory-to-excitatory connections) , recent evidence increasingly indicates that the

‘global’ properties of long-range connections could also be critical in shaping macroscale dynamics'#'~
143 In parallel to this trend, our findings also highlight the role of heterogeneous connectional properties,
such as the embedding of cortical hierarchy, directed signal flows, and their weighted signs, in simulating
more biologically plausible functional dynamics. Indeed, our post-hoc analysis suggested that the
‘negative’ iEC, despite their substantially weak strength, is essential to boost the EC-to-FC recovery
(Supplementary Fig. 4b), as well as to capture the cortical hierarchy in paralimbic regions

(Supplementary Fig. 9). Amid ongoing debates regarding the role of macroscale inter-areal connections

in shaping spatiotemporal brain activity patterns'#47146 our study highlights the necessity of accounting

for heterogeneity in global connectivity structures, an aspect that has been largely overlooked in prior
modeling research.

Effective connectivity, pioneered by Friston in 2003'4’, has evolved to encompass concepts such as
directed functional connectivity and information flow°%°¢. Despite its importance, the perception within
the field regarding this methodology has been rather divergent. On the one hand, there has been
appreciation for the development of many different algorithms for estimating directionality using
technically advanced statistical methods3>#446748.59 On the other hand, the practical application of
these algorithms has left a somewhat mixed impression. In particular, the overabundance of specialized
algorithms designed to address specific issues has made it difficult to make a consensus in terms of
how to navigate the array of options to find the most suitable algorithm for their research interests. The
creation of a unified methodology, rather than yet another sophisticated algorithm, was therefore crucial
for advancing the field. The effectiveness of our integrative and unified framework is demonstrated by its
enhanced accuracy across various atlas resolutions and data types, including both human and macaque
brain networks, and its reproducibility at both individual and group levels. Our methodology thus paves
the way for a more streamlined and cohesive approach to effective connectivity mapping of the human
brain.

Several limitations should be acknowledged. First, the algorithms used in our study do not encompass
the entire spectrum of available EC methods, particularly in light of recent advancements such as deep
learning models ranging from graph neural networks to transformers'#~1%3_ Nonetheless, our framework
is not restricted to specific algorithms but is open to testing any other combination of mathematically
distinct yet complementary methods, which could be a future research topic. Second, our integration
process relied on a linear approach, with which we cannot capture more complex nonlinear relationships
between input algorithms and outcomes. However, our simple linear method could preserve the topology
of each connectivity matrix and requires only a few minutes of computational time, with the added
benefit of straightforward interpretability. Third, we did not include subcortical structures (e.g., thalamus
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and hippocampus) in our iEC framework, which may lead to some deficiency in reconstructing the whole-
brain hierarchy map, especially considering that they often play a central role in creating structured
neural activities across macroscale brain networks'341%4~157 However, given that the signal-to-noise
ratio of fMRI signals is generally low in these deep brain structures, when we examined the iEC profiles
covering the whole brain, the pattern in the subcortical structures showed almost negligible EC
magnitude in single algorithms compared to the neocortex, which made us preclude their involvement
for the calculation of iEC. Analyzing higher gradient-field MRI data will be required to address this issue.
Lastly, we did not account for local heterogeneity, such as the varying coupling values of excitatory and
inhibitory populations within regional circuits, which is another crucial feature of the brain®3158-160,
Future research could incorporate these two different scales of heterogeneity (local properties of cell
populations vs. global connectional topology and information flow properties) and explore how these
factors interact to shape spatiotemporal brain activity.

Methods

1. Data acquisition

Throughout this study, we analyzed human and non-human primate data for simulation and empirical iEC
analyses. In this section, we first provide the data description and then the details of their image
processing steps.

1.1 Macaque tract-tracing data

We have analyzed macaque tract-tracing data from Froudist-Walsh et al. (2021)'%, which provides a
comprehensive overview of cortical connectivity through retrograde tracer injections. Specifically, the
tracers injected into specific cortical targets were transported to neuron cell bodies across the brain,
except the injection site. These neurons, termed labeled neurons (LNs), were quantified in source areas
projecting to the target. To standardize connection strengths, we calculated the fraction of labeled
neurons (FLN) by dividing the number of LNs in a source area by the total LNs, excluding the injection
site. Additionally, we measured the supragranular labeled neurons (SLN), indicating the proportion of
labeled neurons in 2—3 layers with respect to a total labeled neuron number in the source area. This ratio
has been used to characterize the feedforward and feedback nature of the connections, based on the
established observation that feedforward pathways predominantly originate from the supragranular

layers, whereas feedback pathways primarily arise from the infragranular layers84167.

1.2 Macaque neuroimaging data and preprocessing

We also analyzed 3T resting-state fMRI data from 19 anesthetized macaques from PRIME-DE database
(UC-Davis site)”’. The fMRI was acquired using Siemens Skyra scanner with 4-channel clamshell coil,
with the following parameters: 1.4-mm isotropic voxels, repetition time (TR) = 1600 ms, echo time (TE) =
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24 ms, field of view (FOV) = 140mm. We employed a HCP-style preprocessing pipeline to process fMRI
data’®?, which included: anatomical structure reconstruction and segmentation, normalization to a
standard brain template, correction for spatial and temporal distortions, and motion correction and
resampling for surface and voxel data. Additional nuisance regression was applied to the fMRI data for
denoising, which included: 12 motion-related regressors (motion parameters and derivatives thereof)
and 5 principal components from white matter and ventricles and their derivatives (in total 32
regressors). The resulting signal was high pass filtered at 0.008Hz to remove noise induced by slow drift.

1.3 Human neuroimaging data and preprocessing
1.3.1 Demographics

To compare the functional hierarchy and signal flow across the hierarchy across different brain states,
our study included three distinct human fMRI datasets: resting-state fMRI, movie-watching fMRI, and
tonic-pain fMRI. For the resting-state dataset, we utilized the S1200 release from the Human

Connectome Project (HCP)'3. After excluding participants with excessive head motion, we analyzed

data from 440 participants (mean age 28.8 years, 245 females). For the movie-watching dataset, we

used the 'StudyForrest' dataset from Sengupta et al.’®, excluding two participants due to excessive head

motion, resulting in a final sample of 13 participants (mean age 29.4 years, 6 females). Finally, for the

tonic-pain dataset, we employed data from Lee et al.’>1%® which included 48 participants after

excluding participants with excessive head motion (mean age 22.8 years, 21 females).
1.3.2. Human neuroimaging data and preprocessing

1. HCP S1200 dataset. MRI scans were conducted using a customized 3-T Siemens Connectom Skyra
scanner equipped with a standard Siemens 32-channel RF receive head coil. T1-weighted structural
images were acquired with 0.7-mm isotropic voxels, a TR of 2400 ms, an TE of 2.14 ms, and an FOV
of 224x224 mm. T2-weighted functional images were obtained with 2.0-mm isotropic voxels, a TR of
720 ms, a TE of 33.1 ms, and an FOV of 208x180 mm.

2. StudyForrest dataset. In this dataset, participants engaged in a naturalistic audio-visual task by
watching and listening to the movie Forrest Gump. The MRI data were acquired using a 3-Tesla
Philips Achieva dStream scanner with a 32-channel head coil. T1-weighted images were captured
with 0.67-mm isotropic voxels, a TR of 2500 ms, a TE of 5.7 ms, and an FOV of 191.8x256x256 mm.
T2-weighted functional images were acquired with 1.4x1.4x1.5 mm isotropic voxels, a TR of 2000
ms, a TE of 30 ms, and an FOV of 240 mm.

3. Tonic-pain dataset. To induce tonic pain, we delivered the capsaicin-rich hot sauce onto the
participants’ tongues, and participants continuously rated their pain during the run. The fMRI scan
duration was 20 minutes to fully cover the entire period of sustained pain from its initiation to the
complete remission. The MRI data were acquired using a 3-T Siemens Prisma scanner with a 64-
channel head coil at Sungkyunkwan University. T1-weighted structural images were acquired with
0.7-mm isotropic voxels, a TR of 2400 ms, a TE of 2.34 ms, and an FOV of 224x224 mm. T2-
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weighted functional images were acquired with 2.7x2.7x2.7 mm isotropic voxels, a TR of 460 ms, a
TE of 27.2 ms, and an FOV of 220 mm.

The preprocessing steps of fMRI data are thoroughly documented in the respective original manuscript
for each dataset. In brief, we aimed to adhere as closely as possible to the HCP pipeline across all
datasets to maintain consistency. This pipeline includes several critical steps: correcting for spatial and
gradient distortions, compensating for head motion, normalizing signal intensity, removing bias fields,
aligning data with T1-weighted structural images, and conforming to the 2-mm standard Montreal
Neurological Institute space. Furthermore, head motion artifacts and structured noise were mitigated
using a combination of independent component analysis and FMRIB’s ICA-based X-noiseifier (ICA +
FIX)'®7. However, it is important to note that this specific classifier is not universally applicable to other
neuroimaging data obtained with varying MRI specifications and acquisition protocols. Therefore, for the
movie-watching and tonic pain datasets, we opted to employ ICA-AROMA'®8, which operates on a
conceptually similar basis to ICA + FIX but is designed for more general datasets. Indeed, the two
denoising approaches are only different in the way the noise components are classified, allowing us a
close comparison of fMRI data across different states. Additionally, we regressed out mean CSF and
WM signals from the denoised data to further exclude non-neuronal signals from our final analysis. The
resulting signal was high-pass filtered at 0.008Hz to remove noise induced by slow drift. In our parcel-
level analysis, we obtained the average time series for every vertex within each region defined by the
Schaefer (bilaterally 100 parcels) or MMP (bilaterally 360 parcels) atlas, resulting in the final parcel-level
BOLD time series.

1.3.3 Diffusion MRI data

To construct a high-quality SC matrix, we employed diffusion-weighted imaging (DWI) data of 86 young-
adult subjects from the Q3 release of the HCP database’®®, to be independent (thus unbiased) from our
main resting-state fMRI analysis. The HCP DWI scans were acquired using a customized 3-T Siemens
Connectom Skyra scanner with a standard Siemens 32-channel RF receive head coil, with the following
parameters: 2.0-mm isotropic voxels, TR = 5520 ms, TE = 89.5 ms, FOV = 208x180 mm (The detailed
preprocessing steps are thoroughly documented in the original manuscript'’9).

To first estimate the fiber orientation distributions'”?~172 from the preprocessed DWI data, we first
employed a multi-shell, multi-tissue constrained spherical deconvolution process using MRtrix3. We then

used a deterministic tractography algorithm to construct the tractogram from the estimated fibers'”4,
employing the algorithm's default settings with modifications only to the maximum length (250 mm) and
the number of streamlines (5 million). To enhance accuracy in the tractogram, we applied a filtering

method'”®

, which minimizes spurious fiber tracking. SC matrices were then generated by counting the
stream lines between brain regions based on two cortical parcellations: Schaefer-100 and MMP-360. As
a final step in constructing a group-level SC matrix, we averaged the individual SC matrices and applied a

threshold to retain the top 15% of connections for a balanced trade-off between sensitivity and

specificity76.
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1.3.4 synthetic directed structural connectivity

Our synthetic directed network generation began with the group-level SC derived from the DWI data
above. We introduced directionality into this matrix using the ‘'randmio_dir_connected.m' from the Brain
Connectivity Toolbox'””. This function randomly rewires a subset of edges (total 30% of edges are
rewired at each network generation) within the original SC matrix, with the constraint of preserving the
network's original degree distribution. By inducing directionality in this manner, we maintained the overall
integrity and architecture of the empirical SC, resulting in a biologically plausible synthetic directed SC.

2. Effective connectivity algorithms

Over the past two decades, the proliferation of diverse EC algorithms has underscored the field's growth
but has also introduced challenges in achieving consensus and reproducibility due to varying
methodological approaches. To address these challenges, here we developed the iEC method. One
crucial aspect of its development was the characterization of existing algorithms. To this end, we
created a comprehensive taxonomy of EC algorithms by categorizing them into two primary groups:
‘graphical model’ and ‘dynamical system’. These categories fundamentally differ in their approaches to
estimating directed influence. The graphical model category, particularly Bayesian network analysis,
utilizes concepts from Bayesian probability theory (e.g., d-separation and conditional independence) to
infer the presence and directionality of connections. In contrast, the dynamical system category employs
linear or nonlinear dynamics to model data and infer the connectivity matrix. Further, we subdivided the
graphical model category into algorithms that can infer cyclic connections and those that cannot
(acyclic), while the dynamical systems category was divided into lag-based models and dynamic causal
models. Following this, we implemented a screening process to select representative EC algorithms
within each category, guided by specific selection criteria:

1) Cyclic connections: The algorithm must possess the ability to infer cyclic (i.e., recurrent) connections
within the network, as the brain comprises a dense network of reciprocal connections (e.g., 26 to 42% of
observed connections are reciprocal in macaque brain®4178).

2) Scalability to high-resolution networks: The algorithm should be able to compute high-resolution

networks, given that the human brain is known to comprise at least 100 functionally distinct brain

60,179 61,180

areas , and the widely used brain atlases for human consist of more than 300 nodes

3) Mathematical uniqueness: To avoid redundancy, we selected one algorithm per category. If two
algorithms share similar mathematical underpinnings, their EC estimates are likely to yield similar
outputs, thus an algorithm with either lower performance or higher computational cost was excluded
from the list of candidate algorithms.

In the Bayes network category, we removed all algorithms that cannot infer cyclic connections (e.g.,
Patels’ tau method), and within ‘cyclic’ category, we then selected one algorithm that takes less
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computation time for high resolution networks (i.e., scalability) to choose a representative algorithm of
this category resulting in the following algorithm:

1) FASK (Fast Adjacency Skewness)*': This method was chosen from the Bayesian net approaches. Its
suitability arises from the capability to infer cyclic connections and amenability to high-resolution
network analyses. For instance, regarding the BOLD signals parcellated based on MMP-360, it takes on
average four minutes to estimate effective connectivity from a subject.

Within the lag-based category, the major algorithms were vector autoregressive models, transfer entropy,
and Granger causality. These algorithms are capable of detecting cyclic connections. However, it has
been demonstrated that Granger causality and transfer entropy are theoretically equivalent for Gaussian

variables'®?, with the key distinction being that transfer entropy can detect nonlinear relationships and is

applicable to non-Gaussian variables'®?. Given recent findings suggesting that macroscopic brain

signals, such as fMRI, are best modelled with a linear method'®3 and follow Gaussian'®*, we excluded

transfer entropy. Furthermore, vector autoregressive models have been shown to outperform deep

learning-based nonlinear models'®®

the following algorithm:

while also being computationally efficient. As a result, we selected

2) VAR (Vector Autoregression)'®®: This was selected for the Lag-based category. The algorithm is well-
suited for our iEC framework due to its ability to detect cyclic connections, infer both negative and
positive connections, and its exceptionally fast computation time (e.g., estimating effective connectivity

from a subject using MMP-360 parcellation in just a few seconds), and the recent reports highlighting its

superior performance in modeling macroscale brain dynamics, such as those observed in fMRI data'®.

Lastly, within the dynamic causal model category, we identified only one viable candidate due to the
scalability requirements. Many algorithms in this category are computationally prohibitive*>'87 but our

selected algorithm demonstrated comparable performance to more computationally intensive models3°.
As a result, we chose the following algorithm:

3) rDCM (regression Dynamical Causal Modeling)®®: This algorithm was opted for Dynamic Causal
Modeling (DCM) analysis, as it is the only one method that can be applied to the high-resolution
networks among DCM algorithms. For example, spectral DCM, which yields results comparable to

rDCM38, requires approximately 200 minutes per iteration for a graph with 36 nodes, with convergence
typically achieved within 64 to 128 iterations.

The selected algorithms, with the exception of rDCM, include free parameters. At each stage of the
analysis, we determined the optimal values of these parameters using the same metrics employed for
the validation of the EC algorithms and found that their variance was minimal. Therefore, for each
analysis stage—simulation, macaque fMRI, and human fMRI—we randomly selected 10 subjects to
obtain the optimal parameters and subsequently used the mean of these values for the corresponding
analysis stage. In the next sections, we explain the details of these selected algorithms. For clarity, we
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first define the mathematical notation used: lowercase letters (e.g., x) represent nodes, uppercase bold
letters (e.g., X) denote matrices, and lowercase bold letters (e.g., V) represent vectors.

2.1 FASK

The FASK infers an effective connectivity matrix through the following procedure. First, it constructs an
adjacency matrix, which serves as a skeleton with no directionality. Next, the algorithm tests each edge
in the adjacency matrix for the presence of a 2-cycle (i.e., recurrent connectivity). If an edge is not a 2-
cycle, the algorithm applies the Left-Right orientation rule to determine its directionality. Specifically, 2-
cycle detection is performed by testing whether the differences between corr(z,y) and

corr(z,y|z > 0),as well as corr(z,y) and corr(z,y|y > 0), are significantly non-zero. If this
condition is met, the recurrent edges are added to the output graph . For the Left-Right orientation rule,
the algorithm orients the edge as « — vy in (i.e., EC matrix), if:

Elzy|z > 0] E[zy|y > 0]
Elz?|z > 0]E[y?*|z > 0] El[z?|y > 0]E[y?|ly > 0]

Otherwise, the edge is oriented as y — . The FASK algorithm inherently infers only the presence of
connections, not their strength. Therefore, we employed a subsampling method*''8 wherein we
randomly sampled half of the BOLD signal using the 'datasample.m' method from MATLAB, estimated
EC from the subsampled signal, obtained 100 different estimates, and calculated their mean to produce
the final EC matrix with continuous values ranging from 0 to 1. FASK utilizes three parameters: a p-value
for pruning edges in the construction of the adjacency matrix (i.e., the cut-off value for the conditional
independence test), an orientation parameter used for testing correlation differences in the 2-cycle
detection step, and a threshold value to remove nonsignificant edges after subsampling. We
implemented FASK using the ‘causal-cmd' method, which is available online
(https://bd2kccd.github.io/docs/causal-cmd/). The further details of the FASK algorithm and its

underlying principles can be found in the original article*’.

2.2 VAR

The VAR systematically describes the linear relationship across multiple interdependent time series. In
the model, the multivariate time series is expressed as a linear combination of its past values, with the
relationship defined by lag-order p. In fMRI analysis, where the temporal resolution is relatively slow, the
best lag-order is typically 1 (see the reference'®® for a detailed analysis of the impact of lag-order on
fMRI model fitting), which simplifies the model to:

\varvecX, = \varvecA\varvecX, , + (,

where \varvecX, is the multivariate time series at time ¢, \varvecA is the matrix of regression
coefficients at lag 1 (i.e,, the EC matrix), and ( is the noise term. The \varvecA matrix is estimated
using ordinary least squares with L2 regularization using a free parameter A to enhance the model’s
robustness and prevent overfitting.
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2.3 rDCM

The rDCM, unlike VAR, models the underlying generative process of the data. While VAR
phenomenologically predicts future values of multivariate variables using vector regression, rDCM
assumes that the data is generated by an underlying dynamical system, either linear or nonlinear, and fits
the system's parameters to the observed data. Specifically, rDCM models the BOLD signal using a linear
dynamical system, which is described as follows:

d\varvecz

= = \varvecA\varvecz + \varvecC'\varvecu

In this equation, \varvecz denotes the activity of brain regions, \varvecA is the effective connectivity
matrix, \varvecC is the input matrix, and \varvecu is the external input to the system. The innovation
of rDCM lies in its technique of converting time-domain signals into the frequency domain, thereby
reducing the system's complexity, and enabling the use of multiple linear regression for a rapid
inference3®. rDCM employs the concept of variational free energy, which balances the reconstruction
accuracy against model complexity, thus inherently guarding against overfitting.

It should be noted that in the original formulation, rDCM models the BOLD signal using a fixed linear
hemodynamic response function before inferring the EC from underlying neural activity. In our study,
given that each of the selected algorithms operates on a different level of brain signals, we removed this
part from rDCM for consistency of the analysis (by editing ‘tapas_rdcm_filter.m’). Code is available online
https://github.com/translationalneuromodeling/tapas/tree/master/rDCM

2.4 Integrated EC framework

We applied a linear combination approach to construct the integrated EC from individual EC estimations.
To do this, individual EC results were weighted by optimal coefficients (i.e., 8 values), which were
determined through a Bayesian optimization to maximize the following objective function:

B* = argmaz, p (iEC,T)

. 1« v
iEC = Fz Ng EC,

where, p is the correlation between the ¢ EC and target matrix 1. At each analytical level, we
employed a distinct target matrix 7' to optimize beta values: 1) At the simulation level, the target was the
synthetic directed SCs; 2) At the macaque level, it was the ground-truth FLN matrix, 3) For the human
level, where the ground-truth does not exist, the correlation was measured between the empirical FC and
simulated FC derived from the Hopf model with the identified iEC as the underlying long-range
connectivity backbone (explained in the next section). Specifically, we utilized the ‘bayesopt.m’ function
from MATLAB to implement Bayesian optimization, which models the objective function probabilistically
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and iteratively selects the most promising variables to evaluate based on a trade-off between exploration
and exploitation (see ref.”® for more details).

For the iEC construction, participants (both macaques and humans) were divided into 'discovery' and
'replication’ groups, with the exception of the movie-watching dataset, which was not divided due to its
small sample size. Specifically, we first optimized the B values for individual algorithms using data from
the discovery group. These values were then applied to the independent replication group and vice versa
to construct iEC (see Supplementary Fig. 6 for details). For the macaque fMRI, the discovery group
consisted of a randomly selected subset of 9 macaques, while the replication group comprised the
remaining 10 macaques. For human fMRI, participants were split evenly, with 220 individuals assigned to
each group (discovery and replication) for resting-state fMRI data, and 24 participants in each group for
tonic-pain fMRI data.

3. Validation of EC algorithms

We conducted a thorough validation of the selected EC algorithms using a three-step approach: i)
simulating whole-brain activity with synthetic directed SCs, ii) analyzing empirical data from non-human
primate brain networks, and iii) examining human brain networks. This process aimed to rigorously test
the efficacy of the iEC framework. In the first step, we used directed SCs and the Hopf model to simulate
BOLD signals with biologically plausible long-range connectivity, measuring performance by comparing
the inferred ECs to the ground truth. In the second step, we employed macaque resting-state fMRI to
infer ECs and compared them against the FLNs, a gold standard for macaque brain connectivity. In the
final step, we inferred ECs from human resting-state fMRI and used them in the Hopf model to simulate
BOLD signals, and measured the performance by correlating the simulated FC against empirical FC. In
both the first and final steps, the Hopf model was integral for simulating whole-brain dynamics, and
below, we explain the mathematical details of the Hopf model.

3.1 Hopf whole-brain model

In the first and last step of our three-step validation approach, we simulated whole-brain BOLD signals
using the Hopf model. This model combines local dynamics, described by the Landau-Stuart oscillator,
with global dynamics shaped by a connectivity matrix. Despite its simplicity, the Hopf model has been
widely used to simulate whole-brain dynamics and has been shown to capture numerous
neurobiologically significant phenomena®®18%190 (for more details, see the original paper’®). In brief, the

Hopf model is governed by the following set of coupled differential equations:

d:l?i

rralid e 2’ =yl —wiy; + G Y jCij(a; — z;) + en (t)
dy; 2 2

=l = =yl - wa £ Gy Cyly - yy) e (1)
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Where x;and y, are components governing the local dynamics, a; is a bifurcation parameter, w ; is an
intrinsic frequency of each node, G is a global scaling parameter, Cj; is a connectivity matrix, 7 (t)
represents additive Gaussian noise, scaled by €. Following previous work’®, the value of bifurcation
parameter a was set to be -0.01 for all regions, and the intrinsic frequency w ; of each node was
empirically estimated based on the averaged peak frequency of the BOLD signals associated with each
brain region. In the first simulation step, synthetic directed SCs were used as Cj; to simulate BOLD
signals, from which ECs were inferred and subsequently correlated with the ground-truth SCs. In the fMRI
validation step, ECs derived from fMRI were used as Cj; to simulate BOLD signals, which were then
correlated with the empirical BOLD to assess performance.

4. Neuroanatomical data

4.1 Cortical types

Von Economo and Koskinas were the first to identify cortical types in the human cortex, recognizing
them through the consistent variations observed in the layers across different regions'®’. In our study,
we adapted cortical types based on a recent re-evaluation of VonEconomo'’s micrographs'’.
Classification of cortical types were based on several criteria, including the development of layer IV, the
prominence (marked by denser cellularity and larger neurons) of either deep (layers V-VI) or superficial
(layers II-1ll), the definition of sublayers (such as llla and llIb), the distinctness of boundaries between
layers, and the presence of large pyramidal neurons in superficial layers. These cortical types reflect a
spectrum of laminar complexity, from the highly elaborate koniocortical areas and the six distinct layers
in eulaminate Ill-| to the ambiguous differentiation in dysgranular and the complete lack of layering in
agranular regions. To identify the cortical types for each parcel in the MMP-360 atlas, we used the
Brodmann cortical atlas along with data provided by Garcia-Cabezas (2020'"), which classified the
cortical type of each Brodmann area. Specifically, we first assigned cortical type information to the
parcels in the Brodmann atlas, and then upsampled this annotated atlas to align with the MMP-360 atlas.
Additionally, we applied a general linear model to examine the linear relationship between cortical types
(an ordinal variable) and signal flow hierarchy levels (a continuous variable). This analysis was
conducted using MATLAB's 'fitglm.m' function.

4.2 Cytoarchitecture and myeloarchitecture

The 1905 edition of the Campbell atlas®? delineates 17 distinct cortical regions, closely mirroring the
cortical organization proposed by Mesulam’’. The arealization is primarily based on histological
features, such as cyto- and myelo-architectures, where regional boundaries are determined by variations
in laminar arrangement and number of fibers and neurons. Each region is given a name reflective of its
function and/or geographical location, examples being the visual-sensory area and the temporal area.
We used data from ref®! for the cortical projection of the Campbell atlas in our analysis. For the
myeloarchitecture data, we employed a 3D projection of the Vogt-Vogt legacy data, which is founded on
a comprehensive meta-analysis and corroborated by ground-truth histological data. Detailed protocols
on the myelin data projection in cortical surface can be found in the original paper’?.
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4.3 Mesulam's cortical zone

In his seminal work”", M. Mesulam introduced functional subtypes, or cortical zones, of the human
cortex, building on comparative homology with macaque monkeys. The cortical zones— primary
sensory-motor, unimodal and heteromodal association, paralimbic, limbic and—had been well
established in macaques through detailed anatomical, physiological, and behavioral studies. Mesulam
inferred the human equivalents of these zones by utilizing cytoarchitectonics, electrophysiological
recordings, functional imaging, and the behavioral effects of focal lesions. In his ‘human-cortical-zone’
atlas, he annotated all areas of the Brodmann atlas. We used this annotated Brodmann atlas to create a
cortical zone map of the human brain, which we then upsampled to align with the MMP-360 atlas.
Additionally, we developed MMP-27 modules to more effectively capture the signal flow across cortical
zones by subdividing the existing MMP-22 modules, while making minimal alterations to the original
boundaries. Specifically, new modules were introduced whenever cortical zones extended beyond the
existing boundaries, resulting in the formation of 27 distinct modules.

5. Network analysis

Below, we describe three methods that we used to profile the network characteristics of the whole-brain
EC, including connectome profiles, signal flows, and the functional hierarchy estimation of the cerebral
cortex.

5.1 Degree and positive/negative ratio calculation

For the connectome profile, we measured both the weighted in-degree and out-degree of ECs across the
whole brain’s network. This process involved calculating the number of incoming and outgoing
connections for each node, providing overarching connection architectures across different brain
regions. Given an EC matrix, with columns representing source nodes and rows representing target
nodes, the weighted degree for a given node ¢ was calculated using the formula:

InDegree (i) = N ECyV
Similarly, the outdegree for node % was determined by:
OutDegree (i) = ;V: ECi; v

After establishing in- and out-degrees, we computed the ratio of positive to negative connections for
both. This involved categorizing each connection as either positive or negative based on its sign and
then calculating the ratios as follows:

> N I(EC;; > 0)

Positive Ratior,pegree (1) = N
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> N I(EC; < 0)
N

NegativeRatior, pegree (1) =

where 1 is an indicator function that yields 1 if the connection meets the given condition. The out-degree
ratios were determined using a similar approach, referencing the out-degree equation mentioned above.
For the statistical comparison of the degree and edge strength distributions between the target matrix
(e.g., synthetic directed SC in the simulation analysis) and the inferred ECs, we utilized Pearson's
correlation coefficient, implemented via the ‘corr.m' function in MATLAB. All reported statistical values
were FDR-corrected to account for multiple comparisons.

5.2 Signal flow analysis

In addition to a network profiling approach, we also examined the signal propagation throughout the
cortex using a linear dynamical system analysis, simulating unconstrained signal propagation across the

connectivity matrix'®. First, the EC matrix was normalized to enhance the system's stability by adjusting
its eigenvalue spectrum according to the following equation:
_ EC

A

EC

Here, A is the largest eigenvalue of the EC matrix, ¢ = 1 to ensure system stability, and I denotes the
identity matrix of size NxN, which was the same as the number of parcels in the brain atlases (e.g., 360
for MMP atlas). We then tracked the temporal evolution of this activity as it propagates through the
network pathways, governed by the differential equation

\varvecx = \varvecE\varvecC x \varvecz (t) . This approach effectively simulates the
unconstrained signal flow across the network as dictated by the EC matrix. To simplify the visualization
of these directed communications among 360 nodes without loss of generality, we conducted this
analysis within the framework of the 22 (or 27) modules in MMP, where cortical areas are grouped based

on both anatomical and functional features and arranged in a hierarchical manner®.

In the state-dependent analysis, we quantified the change in signal flow for each module by calculating
the difference in outdegree between conditions, separately for negative and positive signal flows. To
evaluate statistical significance, the A values (e.g., positive outdegree difference between movie-
watching and resting states) were standardized using z-scores. Modules exhibiting statistically
significant changes in signal flow were identified by applying z-score thresholds corresponding to the
one-tailed (a = 0.05) and two-tailed (a = 0.025) significance levels to detect substantial deviations from
the mean.

5.3 Hierarchy estimation

Finally, to estimate the cortical hierarchy level based on the iEC matrix, we followed an established
model from macaque studies®*. This model draws upon the observation that the proportion of
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projections from the supragranular layers in the source area (SLN) measures a hierarchical distance
between the source and target areas’°. In our analysis, based on a series of findings implicating the
potential relationship between the signed iEC and FF/FB pathways, we substituted the SLN matrix with
iEC matrix. Then the hierarchical values were inferred using a following general linear model:

9(E[EC;])=8;=B;

Here, (3, is the hierarchical level of area 7 and g is a function that relates an expected EC to the
hierarchical distance between areas ¢ and j. Extending this to the full EC matrix, we express the model
as:

g(E[Y]) = Xp

In this formulation, Y is a vector of EC values, (3 is a vector containing the estimated hierarchical levels,
and X is an incidence matrix (a matrix that represents which projections are connected to which brain
areas) constructed from the EC, with dimensions p X n, where p is the number of projections and n is
the number of areas. In our study, we assume the link function, g, to be the identity function, and solve
the equation using least squares, which is equivalent to the approach of Barone et al. (2000)°°.
Additionally, in our study, we thresholded the EC matrix by retaining the top 15% proportion of the
strongest absolute weights to obtain a balanced trade-off between sensitivity and specificity'’®. The
general trend of signal flow hierarchy does not vary along the threshold values (see Supplementary

Fig. 10).
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Figure 1

Overview of the iEC approach and comprehensive network profiling of the human brain.
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a, Taxonomy of EC algorithms. We categorized individual EC algorithms into two major groups, one
based on “Graphical model” and the other based on “Dynamical system”, and selected representative EC
algorithms for each category through a dedicated screening process. The final chosen algorithms were
FASK, VAR and rDCM. b, The individual algorithms were then combined using a linear integration
technique, which performs a weighted sum of their EC results to create an iEC. ¢, Both individual and iEC
algorithms were evaluated through a three-step validation process involving: /) inputting either simulated
(top: whole-brain simulation) or empirical BOLD signals (middle and bottom: macaque and human fMRI)
into each algorithm, jj)estimating EC or ‘simulated FC' matrices, and iii) quantitatively comparing the
resulting matrices to their corresponding targets - i.e., synthetic directed SC [top], tract-tracing based
‘Fraction of Labeled Neuron’ (FLN) values [middle], empirical FC [bottom] — to assess validity. d, After
methodological validation, the group-level iEC map from empirical human fMRI was profiled in terms of
(1) degree distribution and (2) signal flow across the networks. Finally, (3) the hierarchical levels of the
whole brain areas were estimated using a general linear model based on iEC values and (4) compared
across different brain states including exteroceptive, resting and interoceptive states.
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Figure 2

Validation of individual and integrated EC algorithms.

a, Validation using synthetic directed networks. Using diffusion MRI from the HCP dataset, we first
constructed a structural connectivity (SC) matrix at two different resolutions: Schaefer-100°° and MMP-
360°". To induce directionality, the cells in this matrix were randomly shuffled while preserving each
node’s outdegree. This directed SC served as the ground truth connectivity matrix of the Hopf model to
generate brain signals, which were then fed into the individual EC algorithms. The resulting ECs were
integrated to construct the iEC matrix. We then measured the correlation between the identified ECs and
ground truths (i.e., synthetic networks generated across 100 iterations) using two metrics (b, ¢; see
Supplementary Fig. 2 for results from the Schaefer atlas). d, Validation using macaque tract-tracing data.
Individual ECs were first inferred from fMRI data of anesthetized macaques, using data extracted from
40 tracer-injected sites. We then measured the correlation between the ECs and the fraction of labeled
neurons (FLN). e, Correlation between ECs and FLN at the individual level. The inset shows a scatter plot
for median correlation value. f, Next, using supragranular labeled neurons (SLN), connections were
categorized into feedforward (FF) and feedback (FB) pathways (based on 0.5-cutoff for SLN), and the iEC
of these two pathways were separately profiled. g, EC-to-FC recovery analysis in the human brain.
Individual ECs were derived from resting-state fMRI data and used to construct the iEC. Next, each EC
was fed as a connectivity matrix to the Hopf model to simulate brain signals, which were subsequently
used to reconstruct FC. This reconstructed FC was then compared to the empirical FC (thus called “EC-
to-FC recovery’). h, The correlation between simulated and empirical FCs at the individual level (left) and
group level (right).
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The iEC profiling of the resting-state human brain

a, The modular structure of iEC is unveiled by organizing it according to 7 functional networks from the
Yeo-Krienen atlas®® (for visualization purpose, only the left cortex presented). b, The edge distribution of
iEC shows a characteristic heavy-tail distribution. ¢, Profiling of the positive-negative ratio of outdegree
connections (see Supplementary Fig. 5 for the indegree plot) based on the 7 functional networks. Note
that the dichotomized pattern between positive and negative connections in the unimodal regions
gradually converges into a form with a more balanced ratio in higher order heteromodal areas. d, Signal

propagation based on a linear dynamical system'® across 22 modules of the MMP-360 atlas. Modules
are categorized into functionally specialized subnetworks for easier interpretation of the signal flow
patterns. Edge thickness indicates signal strength, and color represents positive (red) and negative
(blue) signal flows, respectively. e, Stratification of signal propagation based on the proportion of
positive and negative signal flows within/between unimodal and heteromodal systems. Positive signal
flow prevails within and between the systems, whereas negative signal flow is primarily observed in
hetero-to-unimodal pathways during resting-state fMRI.
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The iEC framework reveals a characteristic structure of signal flow hierarchy in the human brain

a, Schematic of our approach to estimating the hierarchy. To illustrate the process of hierarchy
estimation, we put in side by side a hierarchical signal flow from our previous findings (Fig. 3h) and its
corresponding theoretical circuit model. Given that the connection topology in the macaque study
(represented by SLN) was used to estimate cortical hierarchy, here, we replaced the SLN with our iEC
matrix to infer the hierarchy level of each cortical area across the entire brain. b, The resultant signal flow
hierarchy map is shown. The insular and paralimbic areas are positioned at the top of the hierarchy, while
the primary sensorimotor areas are located at the bottom. ¢, The difference between our EC-based
hierarchy and FC-based functional gradient. The brain areas with higher EC-based hierarchy
(>mean+1SD) but lower functional gradient (<mean-1SD) are marked by red, while those with opposite
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profiles are marked by blue (i.e., higher gradient but lower hierarchy) in both graphs and cortical
surfaces. d, The cortical zones proposed by Mesulam’? (left), indicating different levels of cortical
hierarchy. Note that except for subcortical limbic areas (which were not included in the current study; see
Discussion related to the study’s limitation), the paralimbic areas are at the top of the hierarchy within
the neocortex. These four zones are superimposed on the Brodmann parcellation scheme (middle).
Finally, the hypothetical signal processing pathways across corresponding hierarchical levels proposed
by Mesulam are shown (right). All figures are sourced from Mesulam, 2000”". e, The relationship
between the identified signal flow hierarchy and histological cortical types. Note that as the hierarchical
value increases, the cortical type transitions from a laminar structure with clearly defined granular layers
to one with less distinct or even absent granular layers. f, Signal propagation was analyzed across 27
modules derived from Mesulam'’s cortical zones. Positive signals predominantly originated from primary
and unimodal association areas and decreased along the hierarchy, while the negative signals
progressively increase as they move from primary sensory to paralimbic areas.
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State-dependent reorganization of signal flow hierarchy and signal flow of the human brain
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a, Signal flow hierarchy maps derived from movie-watching (left), resting (middle) and tonic pain (right)
states. The correlations of their spatial patterns are shown. b, State-dependent changes in hierarchy
levels sorted out based on the Mesulam'’s four cortical zones (i.e., primary sensorimotor, unimodal
association, heteromodal association, and paralimbic areas). Note that the movie-watching state
resulted in a flattened cortical hierarchy, while the tonic pain condition accentuated the disparity between
paralimbic and non-paralimbic areas (steepening hierarchy). ¢, Signal flow analysis across 27 modules
of MMP (parcellated according to the cortical zones) in the movie-watching and tonic pain states.
(Upper) The magnitude of changes in signal flows (A) in these states compared to the resting state were
presented as a line graph, separately for positive and negative streams and statistically tested (***: pgpr<
0.05, **: p<0.025, *: p< 0.05). In the graph, the findings of § ‘decreased positive signal flow’ and K
‘increased negative signal flow’ are both related to enhanced hierarchy at the primary sensory and visual
association areas, while Il ‘decreased negative signal flow’ implicates diminished hierarchy of the
paralimbic regions, which collectively induce the whole-brain hierarchy to flatten during a movie-watching
state. Similarly, ¥ ‘decreased negative signal flow’ in the default mode area means its diminished
hierarchy during a tonic pain condition, which may cause the steepening hierarchy in this brain state.
(Bottom) The edge-bundling visualization presenting overall signal flows qualitatively supports these
statistical results.
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